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We investigate the critical behavior of a reaction-diffusion system exhibiting a continuous absorbing-state
phase transition. The reaction-diffusion system strictly conserves the total density of particles, represented as a
nondiffusive conserved field, and allows an infinite number of absorbing configurations. Numerical results
show that it belongs to a wide universality class that also includes stochastic sandpile models. We derive
microscopically the field theory representing this universality class.
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The directed percolation~DP! @1# universality class is rec
ognized as the canonical example of the critical behavio
the transition from an active to a single absorbing state. T
universality class appears to be robust with respect to mi
scopic modifications, and non-DP behavior emerges onl
the presence of additional symmetries, such as symm
absorbing states@2#, long-range interactions@3#, or infinitely
many absorbing states@4#.

Recently, a new universality class of absorbing-st
phase transitions~APT! @1# coupled to a nondiffusive con
served field has been identified@5#. This class characterize
the critical behavior of several models showing APT with
dynamics that strictly conserves the density of particles,
is represented by a conserved static~nondiffusive! field. The
models are tuned to criticality by varying the particle de
sity, and exhibit an infinite number of absorbing states. T
universality class is particularly interesting because it e
braces also the large group of stochastic sandpile model@6#
~and in particular, the Manna model@7#! which are the pro-
totypical examples that illustrate the ideas of self-organi
criticality ~SOC! @8#. These are driven dissipative models
which sand~or energy! is injected into the system and diss
pated through the boundaries, leading eventually to a stat
ary state. In the limit of infinitesimally slow external driving
the systems approach a critical state characterized by an
lanchelike response. Recently, it has been pointed out
PRE 621063-651X/2000/62~5!/5875~4!/$15.00
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this critical state is equivalent to the APT present in thefixed
energycase; that is, in automata with the same microsco
rules defining the sandpile, but without driving or dissipati
@9–11#.

The numerical evidence for the existence of such a g
eral universality class@5# is corroborated by the observatio
that all the models analyzed share the same structure
basic symmetries; namely, a conserved and static noncri
field dynamically coupled to a nonconserved order param
field, identified as the density of active particles. These
servations have led to the conjecture that, in the absenc
additional symmetries,all stochastic models with an infinite
number of absorbing states in which the order parame
evolution is coupled to a nondiffusive conserved field de
a unique universality class@5#.

In this Rapid Communication, we study the nondiffusi
field limit for the two species reaction-diffusion~RD! model
introduced in Ref.@12# ~see also Ref.@13#!. In this limit the
model has a phase transition with infinitely many absorb
states, and it conserves the total number of particles tha
associated with a nondiffusive conserved field. We pres
extensive numerical simulations of the model in two a
three dimensions, and determine the full set of critical ex
nents. The obtained values are compatible with the new
versality class conjectured in Ref.@5#. This definitely shows
the existence of a broad universality class that includes
R5875 ©2000 The American Physical Society
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processes, stochastic sandpile models, and lattice gases
the same symmetries. For the present RD model, it is p
sible to derive microscopically a field theory~FT! descrip-
tion. The resulting action and Langevin equations exhibit
basic symmetries that characterize this universality class,
represent a microscopic derivation of a FT for sandpile m
els. Notably, the resulting FT description recovers a phen
enological Langevin approach proposed for sandpiles@9,10#.
The analysis provided here is a very promising path fo
coherent description of several nonequilibrium critical ph
nomena now rationalized in a single universality class.

We consider the two-component RD process identified
the following set of reaction equations:

B→A with ratek1, ~1!

B1A→2B with ratek2. ~2!

In this system,B particles diffuse with diffusion rateDB
[D, and A particlesdo not diffuse; that is, DA50. This
corresponds to the limitDA→0 of the model introduced in
Ref. @12#. From the rate Eqs.~1! and ~2!, it is clear that the
dynamics conserves the total density of particlesr5rA
1rB , wherer i is the density of componenti 5A,B. In this
model, the only dynamics is due toB particles, which we
identify as active particles.A particles do not diffuse and
cannot generate spontaneouslyB particles. More specifically
A particles can only move via the motion ofB particles that
later on transform intoA through Eq.~2!. In the absence ofB
particles,rA is thus a static field. This implies that any co
figuration devoid ofB particles is an absorbing state in whic
the system is trapped forever.

It is easy to see@12# that the RD process defined by Eq
~1! and ~2! exhibits a phase transition from an active to
absorbing phase for a nontrivial value of the total parti
densityr5rc . The critical valuerc depends upon the reac
tion ratesk1 ,k2. The nature of this phase transition forDA
Þ0 has been discussed in@12#; the static field case (DA
50), on the other hand, has never been explored to
knowledge. It is clear that the static field conserved RD~SF-
CRD! model allows, for any densityr, an infinite number~in
the thermodynamic limit! of absorbing configurations, in
which there are noB particles. This is the key difference wit
respect to the case in whichDAÞ0. In the latter case a con
figuration devoid ofB particles consists of many diffusingA
particles. In the long run, all particles can visit all sites in t
lattice, and therefore, in a statistical sense, all configurati
with a fixed number ofA’s are equivalent and the absorbin
state can be considered unique@14#.

The SFCRD model seems to possess all the required s
metries~stochastic dynamics, many absorbing states, st
conserved field! for being part of the universality class con
jectured in Ref.@5#. In order to test this possibility, we hav
performed numerical simulations of the model in
d-dimensional hypercubic lattice withN5Ld sites. Each site
can store any number ofA andB particles; that is, our mode
can be represented by bosonic variables. Initial conditi
are generated by randomly placingNrA

(0) particles A and
NrB

(0) particles B, corresponding to a particle densityr
5rA

(0)1rB
(0) . The results are independent of the particu

initial ratio rA
(0)/rB

(0) , apart from very early time transient
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The dynamics proceeds in parallel. Each time step, we
date the lattice according to the following rules:~a! Diffu-
sion: on each lattice site, eachB particles moves into a ran
domly chosen nearest neighbor site.~b! After all sites have
been updated for diffusion, we perform the reactions:~i! On
each lattice site, eachB particle is turned into anA particle
with probability r 1. ~ii ! At the same time, eachA particle
becomes aB particle with probability 12(12r 2)nB, where
nB is the total number ofB particles in that site. This corre
sponds to the average probability for anA particle of being
involved in the reaction of Eq.~2! with any of theB particles
present on the same site. The probabilitiesr 1 and r 2 are
proportional to the reaction ratesk1 and k2 defined in Eqs.
~1! and ~2!. The order parameter of the system isrB , mea-
suring the density of dynamical entities.

As we varyr, the system exhibits a continuous transitio
separating an absorbing phase (rB50) from an active phase
(rBÞ0) at a critical pointrc . The order parameter is nu
for r,rc , and follows a power lawrB;(r2rc)

b, for r
>rc . The system correlation lengthj and timet, which
define the exponential relaxation of space and time corr
tion functions, diverge asr→rc @1#. In the critical region the
system is characterized by a power law behavior,j
;ur2rcu2n' andt;ur2rcu2n i. The dynamical critical ex-
ponent is defined ast;jz, with z5n i /n' . These exponents
fully determine the critical behavior of the stationary state
the model@1#.

We have studied the steady-state properties of the m
in d52 and 3, by performing numerical simulations for sy
tems with size ranging up toL5512 andL5125, respec-
tively. Averages were performed over 1042105 independent
initial configurations. The values considered for the ratesr i
arer 150.1 andr 250.5 in d52, andr 150.4 andr 250.5 in
d53. From the finite-size scaling analysis for APT@1#, we
obtain the critical point (rc50.3226(1) in d52 and rc
50.95215(15) ind53) and the complete set of critical ex
ponents. A detailed presentation of these results will be
ported elsewhere. In Fig. 1 we show as an example the o

FIG. 1. Order parameter behavior~stationary density ofB par-
ticles! as a function ofD5r2rc for the reaction-diffusion model in
d52 and 3. The slope of the straight lines isb50.65 ind52 and
b50.86 ind53.
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parameter behavior with respect to the control parameteD
5r2rc , from which it is possible to calculate directly theb
exponent. The results obtained ind52 and 3 are reported in
Tables I and II and compared with the Manna sandp
model in the respective dimension.

In APT it is possible to obtain more information on th
critical state by studying the evolution~spread! of activity in
systems that start close to an absorbing configuration@15#. In
eachspreadingsimulation, a small perturbation is added
an absorbing configuration. It is then possible to measure
spatially integrated activityN(t), averaged over all runs, an
the survival probabilityP(t) of the activity aftert time steps.
Only at the critical point do we have power law behavior f
these magnitudes. In the case of many absorbing states
choice of the initial absorbing state is not unique@16#. There
are several methods to perform spreading exponents in
case, and we have followed the technique outlined in R
@5#, which amounts to the study of critical spreading with t
so-called ‘‘natural initial conditions’’ atr5rc @16#. The
probability distributionPs(s) of having a spreading even
involving s sites, as well as the the quantitiesN(t) andP(t),
can thus be measured. At criticality, the only characteri
length is the system sizeL, and we can write the scalin
forms Ps(s)5s2tsF1(s/LD), N(t)5thF2(t/Lz), and P(t)
5t2dF3(t/Lz) @15#. The scaling functionsFi(x) are decreas-
ing exponentially forx@1, and we have considered that th
spreading characteristic time and size are scaling asLz and
LD, respectively. In this case simulations were performed
systems of size up toL51024 in d52 and L5200 in d

TABLE I. Critical exponents for spreading and steady-state
periments ind52. Figures in parenthesis indicate the statisti
uncertainty in the last digit. Manna exponents from Re
@5,10,18,19#.

Steady-state exponents
b b/n' n' z n i

SFCRD 0.65(1) 0.78(2) 0.83(3) 1.55(5) 1.29(8
Manna 0.64(1) 0.78(2) 0.82(3) 1.57(4) 1.29(8

Spreading exponents
ts D z h d

SFCRD 1.27(1) 2.75(1) 1.54(2) 0.29(2) 0.50(2
Manna 1.28(1) 2.76(1) 1.55(1) 0.30(3) 0.48(2

TABLE II. Critical exponents for spreading and steady-sta
experiments ind53. Figures in parenthesis indicate the statisti
uncertainty in the last digit. Manna exponents from Re
@5,10,18,19#.

Steady-state exponents
b b/n' n' z n i

SFCRD 0.86(2) 1.39(4) 0.62(3) 1.80(5) 1.12(8
Manna 0.84(2) 1.40(2) 0.60(3) 1.80(5) 1.08(8

Spreading exponents
ts D z h d

SFCRD 1.41(2) 3.32(2) 1.74(2) 0.16(2) 0.76(3
Manna 1.43(2) 3.31(2) 1.75(2) 0.16(2) 0.75(3
e
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53, averaging over at least 53106 spreading experiments
The new scaling exponentsts , D, d, and h are measured
using the now standard moment analysis technique@17,18#.
The resulting exponents are summarized in Tables I and
and can be compared with the avalanche exponents us
measured in stochastic sandpile models. As a further con
tency check of our results, we have checked that our ex
nents fulfill all scaling and hyperscaling relations in standa
APT. Despite the apparent diversity in the dynamical rul
we can safely include that the SFCRD and the Manna m
els are in the same universality class.

From a theoretical point of view, the SFCRD allows th
construction of a field theory description that also will re
resent the critical behavior of all models belonging to t
same universality class. The construction of the FT follo
standard steps@20#, and it consists of recasting the mast
equation implicit in Eqs.~1! and ~2! into a ‘‘second quan-
tized form’’ via a set of creation and annihilation boson
operators for particlesA and B on each site. It is then pos
sible to map the solution of the master equation into a p
integral over the density fields, weighted by the exponen
of a functional actionS @20#. In our case, we can quote th
elegant results of Ref.@12#, just considering that we hav
DA50. The action of the FT is thus

S5E dxdt$c̄@] t1~r 2D¹2!#c1f̄@] tf2l¹2c#

1u1c̄c~c2c̄ !1u2c̄c~f1f̄ !1v1c̄2c2

1v2c̄c~cf̄2c̄f!1v3c̄cf̄f%, ~3!

wherec and f are auxiliary fields, defined such that the
average values coincide with the average density ofB par-
ticles and the total density of particles, respectively,c̄ andf̄
are response fields, and the coupling constants are relat
the reaction rateski . Namely, D represents the diffusion
coefficient ofB particles,l is initially also proportional toD,
andr is the critical parameter that is related to the differen
of the total density with respect to the critical densityrc . By
standard power-counting analysis, one realizes that the
duced couplingsui /D have critical dimensiondc

(1)54, while
the couplingsv i /D have on their partdc

(2)52. This means
that when applying the renormalization group~RG! and per-
forming a perturbative expansion around the critical dime
sion 4, one could in principle drop all the couplingsv i @21#.
The critical parameter of this theory is the density of act
sitesc, while f serves just to propagate interactions. We c
exploit some symmetry considerations of the FT to relate
physics of the system to the corresponding analytical
scription. By neglecting irrelevant terms in the powe
counting analysis, action~3! is invariant under the shift
transformation

f→f85f1d, r→r 85r 2u2d, ~4!

whered is any constant. This symmetry has a very intuiti
meaning: If we increase everywhere the density of partic
by an amountd, we must be closer to the critical point by a
amount proportional tod. In other words, this symmetry rep
resents the conserved nature of the system. It is also inte
ing to write the set of corresponding Langevin equations~up
to the irrelevant termsv i) by integrating out the respons
fields c̄,f̄ in the actionS,

-
l
.

l
.



re

-
at
h
y

is

ic

f

-
ld
s

w
a

re
eral,

he
e

ce

r
ns,

in

in
ely
in
w

ork
D.
u-
ts

RAPID COMMUNICATIONS

R5878 PRE 62ROMUALDO PASTOR-SATORRAS AND ALESSANDRO VESPIGNANI
] tc5D¹2c2rc2u1c22u2cf1hc , ~5!

] tf5l¹2c1hf . ~6!

Here,hc andhf are noise terms with zero mean and cor
lations ^hc(x,t)hc(x8,t8)&52u1c(x,t)d(x2x8)d(t2t8),
^hc(x,t)hf(x8,t8)&52u2c(x,t)d(x2x8)d(t2t8) and
^hf(x,t)hf(x8,t8)&50. The noise terms have a multiplica
tive nature@22#, that is the standard form in APT. Note th
v i couplings of Eq.~3! contribute to noises correlations wit
higher order terms. These equations have a very clear ph
cal interpretation. The fieldf is conserved@23# and static,
i.e., it only diffuses via the activity ofB particles, repre-
sented by the fieldc. On its turn, the fieldc is locally
coupled to the fieldf, but is nonconserved. Noticeably, th
set of equations recovers~up to the discarded couplingsv i)
the Langevin description proposed on a phenomenolog
level for the sandpiles in Refs.@9,10#, with the extra infor-
mation of the cross-correlation term̂hchf&. Indeed, the sto-
chastic sandpile model has the same basic symmetries o
present RD model, once the local density fieldr is replaced
by the local sand-grain~energy! density and the order param
eter is identified with the density of toppling sites fie
@9,10#. It is then natural to expect that the very same ba
structure is reflected in a unique theoretical description@24#.

The complete RG analysis of the field theory would allo
us to extract estimates for the critical exponents to comp
s
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st
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with simulations ind52 and 3. Unfortunately, some seve
technical problems are encountered in this case. In gen
as pointed out in Ref.@12#, the couplingsv i become relevant
and should be taken into account in the RG analysis. T
importance of the couplingsv i can be argued by the chang
of the energy shift symmetry, Eq.~4!, in the case of the full
action Eq.~3!. Second, and more important, is the presen
of the singular bare propagator for the fieldf, which cannot

be regularized by adding a mass termm2ff̄, since it will
obviously break the symmetry~4!. This singular propagato
gives rise to divergences in the RG perturbative expansio
and the results of Ref.@12# cannot be extended ‘‘tout-court’’
to the limit DA→0. In particular, some Feynman diagrams
the e-expansion presented in Refs.@12,13# are proportional
to 1/DA . Hence, the limitDA→0 in the theory withDA

Þ0 is nonanalytic; any infinitesimal amount of diffusion
the energy field renormalizes to a finite value, and definit
changes the universality class of the model. Work is
progress to provide a suitable regularization that will allo
an e-expansion calculation of the critical exponents.
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204 ~2000!.

@19# K. Nakanishi and K. Sneppen, Phys. Rev. E55, 4012~1997!;
E. Milshtein, O. Biham, and S. Solomon,ibid. 58, 303~1998!.

@20# M. Doi, J. Phys. A9, 1465~1976!; L. Peliti, J. Phys. I46, 1469
~1985!; B. P. Lee and J. Cardy, J. Stat. Phys.80, 971 ~1995!.

@21# In spite of the naive power-counting analysis, the irrelevan
of all terms must be checked on the grounds of a full R
analysis.

@22# J. L. Cardy and R. L. Sugar, J. Phys. A13, L423 ~1980!; H. K.
Janssen, Z. Phys. B: Condens. Matter42, 151 ~1981!.

@23# It is possible to show that the noise termhf is equivalent to a
conserved noise; i.e., it generates the same diagrams in a
turbative expansion; M. A. Mun˜oz and F. van Wijland~private
communication!.

@24# It is worth noticing that the Bak, Tang, and Wiesenfeld san
pile model@6,8# has deterministic dynamics and does not b
long to this universality class. Also, the Langevin descripti
presented here is not valid for deterministic models t
present nonergodic effects and recurrent states. This point,
cussed in detail in Ref.@10#, has been overlooked in Ref.@9#,
where deterministic and stochastic models are not dis
guished.


